143 research outputs found

    Design of polarization-insensitive superconducting single photon detectors with high-index dielectrics

    Full text link
    In this paper, the design of superconducting-nanowire single-photon detectors which are insensitive to the polarization of the incident light is investigated. By using high-refractive-index dielectrics, the index mismatch between the nanowire and the surrounding media is reduced. This enhances the absorption of light with electric field vector perpendicular to the nanowire segments, which is generally hindered in this kind of detectors. Building on this principle and focusing on NbTiN nanowire devices, we present several easy-to-realize cavity architectures which allow high absorption efficiency (in excess of 90%) and polarization insensitivity simultaneously. Designs based on ultranarrow nanowires, for which the polarization sensitivity is much more marked, are also presented. Finally, we briefly discuss the specific advantages of this approach in the case of WSi or MoSi nanowires

    Two-photon interference from two blinking quantum emitters

    Full text link
    We investigate the effect of blinking on the two-photon interference measurement from two independent quantum emitters. We find that blinking significantly alters the statistics in the second-order intensity correlation function g(2)(τ)^{(2)}(\tau) and the outcome of two-photon interference measurements performed with independent quantum emitters. We theoretically demonstrate that the presence of blinking can be experimentally recognized by a deviation from the gD(2)(0)=0.5^{(2)}_{D}(0)=0.5 value when distinguishable photons impinge on a beam splitter. Our results show that blinking imposes a mandatory cross-check measurement to correctly estimate the degree of indistinguishablility of photons emitted by independent quantum emitters

    Observation of strongly entangled photon pairs from a nanowire quantum dot

    Get PDF
    A bright photon source that combines high-fidelity entanglement, on-demand generation, high extraction efficiency, directional and coherent emission, as well as position control at the nanoscale is required for implementing ambitious schemes in quantum information processing, such as that of a quantum repeater. Still, all of these properties have not yet been achieved in a single device. Semiconductor quantum dots embedded in nanowire waveguides potentially satisfy all of these requirements; however, although theoretically predicted, entanglement has not yet been demonstrated for a nanowire quantum dot. Here, we demonstrate a bright and coherent source of strongly entangled photon pairs from a position controlled nanowire quantum dot with a fidelity as high as 0.859 +/- 0.006 and concurrence of 0.80 +/- 0.02. The two-photon quantum state is modified via the nanowire shape. Our new nanoscale entangled photon source can be integrated at desired positions in a quantum photonic circuit, single electron devices and light emitting diodes.Comment: Article and Supplementary Information with open access published at: http://www.nature.com/ncomms/2014/141031/ncomms6298/full/ncomms6298.htm

    Imaging the formation of a p-n junction in a suspended carbon nanotube with scanning photocurrent microscopy

    Full text link
    We use scanning photocurrent microscopy (SPCM) to investigate individual suspended semiconducting carbon nanotube devices where the potential profile is engineered by means of local gates. In situ tunable p-n junctions can be generated at any position along the nanotube axis. Combining SPCM with transport measurements allows a detailed microscopic study of the evolution of the band profiles as a function of the gates voltage. Here we study the emergence of a p-n and a n-p junctions out of a n-type transistor channel using two local gates. In both cases the I-V curves recorded for gate configurations corresponding to the formation of the p-n or n-p junction in the SPCM measurements reveal a clear transition from resistive to rectification regimes. The rectification curves can be fitted well to the Shockley diode model with a series resistor and reveal a clear ideal diode behavior.Comment: Accepted for publication in Journal or Applied Physics. 4 pages, 3 figure

    Highly-excited Rydberg excitons in synthetic thin-film cuprous oxide

    Get PDF
    S.S. acknowledges support from the Swedish Research Council (Starting Grant No. 2019-04821) and from the Göran Gustafsson Foundation. H.A. acknowledges the Purdue University Startup fund, the financial support from the Industry-University Cooperative Research Center Program at the US National Science Foundation under Grant No. 2224960, and the AirForce Office of Scientific Research under award number FA9550-23-1-0489.Cuprous oxide (Cu2O) has recently emerged as a promising material in solid-state quantum technology, specifically for its excitonic Rydberg states characterized by large principal quantum numbers (n). The significant wavefunction size of these highly-excited states (proportional to n2) enables strong long-range dipole-dipole (proportional to n4) and van der Waals interactions (proportional to n11). Currently, the highest-lying Rydberg states are found in naturally occurring Cu2O. However, for technological applications, the ability to grow high-quality synthetic samples is essential. The fabrication of thin-film Cu2O samples is of particular interest as they hold potential for observing extreme single-photon nonlinearities through the Rydberg blockade. Nevertheless, due to the susceptibility of high-lying states to charged impurities, growing synthetic samples of sufficient quality poses a substantial challenge. This study successfully demonstrates the CMOS-compatible synthesis of a Cu2O thin film on a transparent substrate that showcases Rydberg excitons up to n=8 which is readily suitable for photonic device fabrications. These findings mark a significant advancement towards the realization of scalable and on-chip integrable Rydberg quantum technologies.Publisher PDFPeer reviewe
    corecore